

CO₂ Storage: Project Development and Capacity estimation

Philip Ringrose Equinor & NTNU

Contribution to International Knowledge-Sharing Symposium Developing a National CCS Program in Trinidad and Tobago 29-30th October, 2019, UTT Energy Campus, Pt. Lisas, Trinidad and Tobago

Geological Storage of CO₂

- 1. The basic concept is to store captured CO₂ underground in reservoirs that would otherwise contain water, oil or gas
- 2. We need to be deep (greater than 800m) to ensure CO_2 is in a dense form the super-critical phase
- 3. These are also the depths where we are confident that natural gas has been trapped for millions of years
- 4. But the big questions are:
 - Where do we store it?
 - How much CO₂ can we inject?
 - Can we store it safely?
 - Can we store it cost-effectively?

CO₂ at depth

- CO₂ is stored at depths >800m to ensure that CO₂ is in a dense form
- This is also important for storage security, because storage seals become more effective with depth
- CO₂ properties are highly variable, f(P,T)

At standard conditions (ISA) (1.013 Bar & 15°C)

- 1 m³ of CO₂ has a mass of 1.87 kg
- > 1bscf = $28.32 \times 10^6 \text{ m}^3$
- Mass of 1Bscf = 52959.5 kg (or 53 Tonnes)
- Mass of 1MMscf = 52.96 kg
- So a single well injecting 20 MMscf per day is injecting about 1 tonne of CO₂ per day

Simplified CO₂ density versus depth diagram (from CO2CRC)

NB. Gas engineers tend to work in standard cubic feet (scf) while CO₂ projects prefer to report mass

Rock properties versus depth

- Conceptual sketch showing a shallow stratigraphic sequence representative of the North Sea basin.
- Typically a Miocene CO₂ storage target formations could be capped by a Pliocene mudstone sequences forming the main containment system.
- The role of shallow glacial channel and dewatering features in the Pleistocene may be a key issue for assuring storage containment.
- Reference porosity curves are shown based on (1) Sclater & Christie, 1980, and (2) Marcussen et al., 2010.
- The actual porosity and permeability of the shallow basin sequence is variable and uncertain and needs to be determined via site investigation

Overall time-line for CO₂ Storage Projects

- 1. Site Selection
- 2. Storage Operation
- 3. Site Closure
- 4. Post-closure Stewardship

Geological Storage Timeline

(from CO₂ Capture Project <u>http://www.CO2captureproject.org/</u> Cooper et al., 2009)

Containment

Trapping mechanisms involve both physical and geochemical factors:

- Physical trapping mechanisms related to basin-scale processes:
 - regional structure, basin history and pressure regimes
- Physical trapping mechanisms related to geometry of traps:
 - controlled by rock architecture of the storage complex
- Physical trapping mechanisms related to fluid flow processes:
 - Capillary interfaces between fluids
 - \succ Retention of CO₂ as a residual phase
- Geochemical trapping mechanisms:
 - ightarrow CO₂ dissolution in brine
 - \succ CO₂ precipitation as mineral phases
 - \geq CO₂ sorption/absorption (e.g. on clay minerals)

Structural and Stratigraphic trapping

Increasing storage security over time

- The IPCC special report (Metz et al. 2005) argued that the various CO₂ trapping mechanisms would work over time to increase storage security in the long term:
 - Structural and stratigraphic trapping
 - 2. Residual CO₂ trapping
 - 3. Solubility trapping
 - 4. Mineral trapping
- Longer term processes residual solubility and mineral trapping – would gradually work to "fix" CO₂ permanently in the subsurface

Capillary forces and CO₂ trapping

- Capillary forces (interfacial tension) play an important role in trapping of CO₂:
 - Both at the caprock interface (structural trapping)
 - And as residual CO₂ (as the plume migrates upwards)

Capillary seals

- The (molecular-scale) capillary force provides the essential and fundamental seal
- A seal will only leak if P_{fluid} > P_{threshold}
- The key questions are therefore:
 - the capillary pressure functions for the seal
 - Possible weak points (e.g. faults)

Invasion percolation simulation of trap filled so that fluid buoyancy pressure to exceeds P_{threshold}

Laboratory tank demonstration of capillary seal using air and food sieve

https://www.youtube.com/watch?v=8-dXwakvmsl

Site Characterisation

Illustration site characterization work at the In Salah CO₂ storage site.

- CO₂ injection wells (blue)
- Appraisal wells with porosity (red), caliper (grey), gamma (color) logs, pre-injection CO₂ gas distribution (purple)
- Core samples (insert)
- Section shows reservoir and caprock porosity (estimated from seismic and well data).
- Surface shows base reservoir mapped from seismic data.
- Courtesy of the In Salah
 CO₂ Project (Cooper, 2009)

Pore-space Characterisation

- Core analysis, thin section, backscatter scanning electron microscopy (BSEM) mineralogical studies and pore-scale modelling are used to map the pore-space
- Examples from Lopez et al 2011

Geochemical Processes

Two main processes concerning the CO₂-minerals reactions in the pore space:

- CO₂ can precipitate as carbonate minerals (such as calcite and ankerite)
- 2. CO₂ sorption or adsorption on clay minerals

Effect of CO₂ reaction with shale (Kaszuba et al, 2003)

SEM image of sample from In Salah:

- Cemented fractures filled with Fecarbonate cements (Ankerite, pink)
- Chlorite grain coatings (green) and quartz sandstone grains (yellow)

CO₂ Dissolution

- CO₂ dissolution in brine has an important potential to assist and stabilise long-term storage, but estimates of the effect vary enormously
- We know that convective mixing >> molecular diffusion
- The diffusive boundary layer needs to achieve a critical thickness before convection can occur
- · Critical time (t_c) for onset of convection and the characteristic wavelength (λ_c) are estimated to be in the range of:
 - \cdot 10 days < t_c < 2000 Years
 - \cdot 0.3 m < λ_c < 200 m
 - Riaz et al., 2006.

Scope for reducing these ranges using:

- Field Case Histories
- Large-scale lab experiments
- Good geological models

Density-driven flow in CO_2 storage in saline aquifer, Pau *et al*, 2010.

Sleipner time-lapse difference datasets

- Sleipner time-lapse seismic data, showing amplitude difference between 2010 and 1994 surveys.
- Bright amplitudes reveal presence of CO₂ complicated by effects of time-shifts and thin layer effects (Furre et al. 2015).

So what happens underground?

fineral/pore-space reactions

Analytical models for a CO₂ plume

- For a vertical well injecting at a rate Q_{well} into a horizontal saline aquifer unit, with thickness *B*, the CO₂ plume will expand with a 'curved inverted cone' geometry with a radius, *r* (Nordbotten et al. 2005).
- When the flow is viscous dominated:

However, the shape of the cone and the efficiency depends on the gravity/viscous ratio:

$$\Gamma = \frac{2\pi\,\Delta\rho\,k\,\lambda_b\,B^2}{Q_{well}}$$

Effects of mobility and buoyancy on capacity

Issues for injection pressure management

- CO₂ supply rates, pressures, temperatures
- Reservoir depth, water depth
- Storage site capacity
- Well design
- Site performance (plume behaviour)
- Reservoir properties
- Overburden & seal charactersitics
- Regional aquifer

Storage Capacity Estimation

- Many efforts and studies have been completed to map potential CO₂ storage formations and estimate the storage capacity, such as
 - The EU GeoCapacity Project on European Capacity for Geological Storage of Carbon Dioxide (2008; <u>http://www.geology.cz/geocapacity</u>)
 - The North American Carbon Storage Atlas (2012; <u>www.nacsap.org</u>) (USA, Canada and Mexico)
 - The CO₂ atlas for the Norwegian Continental Shelf (2014; <u>www.npd.no/en/Publications/Reports/Compiled-CO2-atlas/</u>)
 - Other national CO₂ storage databases including UK, Australia and Brasil
- These national government-sponsored projects have set out to prepare nations for future large-scale CO₂ storage activities
- In general, there is plenty of theoretical capacity:
 - The North American estimate is over 2,400 billion metric tons (Gt)
 - Greater North Sea basin has mapped capacity of 160 Gt
- However, there is also much debate about how realistic these estimates are:
 - \blacktriangleright We need to understand the basis for CO₂ storage capacity estimates

Storage Capacity Estimation

Bachu et al (2007) provide a valuable review of the methods used in CO_2 storage capacity estimation

- There are several different types of estimate which can be summarized by the Techno-Economic Resource–Reserve Pyramid
- We need to differentiate:
 - Theoretical capacity (the physical limit)
 - Effective capacity (a more realistic estimate using cut-off criteria)
 - Practical capacity (taking into account economic, technical and regulatory factors)
 - Matched capacity (site-specific storage for specific CO₂ capture plants)

There are also various adaptations of this pyramid (e.g. for different stages of exploration and development)

Matched Capacity

 Map of CO₂ emissions, infrastructure and storage capacity in NW Europe (from <u>www.geocapacity.eu</u>)

Sleipner site overview

Regional mapping of Utsira formation (Miocene)

- CO₂ from the Sleipner field is stored in the Utsira Formation, North Sea
- Reservoir unit at 800-1100 m depth
- One CO₂ injector 36 meter perforation at ~1012 meter (TVD)
- >17Mt CO₂ have been injected (Jan 2019, ~0,9M per annum)
- Background to site selection given by Baklid et al. (1996)
- Regional resource mapping found in Norwegian CO₂ Storage Atlas <u>https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/</u>

Final words: Experience from CO₂ Storage projects

Operational experience (saline aquifers) reveals several important learnings:

- ▶ Injection rates of 0.3-0.9Mt CO₂/year/well
- Injectivity and capacity highly dependent on reservoir properties revealed during site operation
- ➤Geological heterogeneity means that flexible well solutions will be required
- Rock mechanical response
 to P_{ini} may be a critical factor
- Importance of pressure and fluid management
- Need for fit-for-purpose reservoir monitoring portfolio

References

- Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4), 430-443.
- Baklid, A., Korbol, R., & Owren, G., 1996. Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE paper 36600-MS presented at SPE Annual Technical Conference and Exhibition.
- Cooper, C. and members of the Carbon Capture Project, 2009. A technical basis for carbon dioxide storage: London and New York, Chris Fowler International, 3-20. <u>http://www.CO2captureproject.org/</u>
- Furre, Anne-Kari, Anders Kiær, and Ola Eiken, 2015. CO2-induced seismic time shifts at Sleipner. Interpretation 3.3 (2015): SS23-SS35.
- Kaszuba, John P., David R. Janecky, and Marjorie G. Snow. "Carbon dioxide reaction processes in a model brine aquifer at 200 C and 200 bars: implications for geologic sequestration of carbon." Applied Geochemistry 18.7 (2003): 1065-1080.
- Lopez, O., Idowa, N., Störer, S., Rueslatten, H., Boassen, T., Leary, S. & Ringrose, P., 2011. Pore-scale modelling of CO2-brine Flow Properties at In Salah, Algeria. *Energy Procedia*, Volume 4, 3762-3769.
- Metz, B. (Ed.) 2005. Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press.
- Nordbotten, J. M., Celia, M. A., & Bachu, S., 2005. Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transport in Porous media, 58(3), 339-360.
- Okwen, R. T., Stewart, M. T., & Cunningham, J. A., 2010. Analytical solution for estimating storage efficiency of geologic sequestration of CO2. International Journal of Greenhouse Gas Control, 4(1), 102-107.
- Pau, G.S.H., Bell, J. B., Pruess, K., Almgren, A. S. Lijewski, M. J. and Zhang, K., 2010. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. *Advances in Water Resources*, 33 (4), 443-455.
- Riaz, A., Hesse, M. Tchelepi, H. A. & Orr, F. M., 2006. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. *Journal of Fluid Mechanics*, 548, 87-111.
- Ringrose, P. S. 2018. The CCS hub in Norway: some insights from 22 years of saline aquifer storage. Energy Procedia, 146, 166-172.