Monitoring, Safety and Stakeholder Engagement

Dr. Katherine Romanak Gulf Coast Carbon Center Bureau of Economic Geology The University of Texas at Austin

Developing a National CCS Program in Trinidad and Tobago International Knowledge-Sharing Symposium

Gulf Coast Carbon Center

Bureau of Economic Geology The University of Texas at Austin

- Multi-disciplinary group
- 20 years experience in CCS research and application
- Develop and implement monitoring programs for geological CO₂ storage sites
 - ✓ Site selection and permitting
 - ✓ Regulatory compliance
 - ✓ Conformance monitoring
 - ✓ Environmental monitoring
- Monitored >9 demonstration storage projects
- Actively monitored over 5 million tonnes of CO₂ in the ground

Evolution of Experience

500 T

Frio Brine Storage

Pilot 2004

Pilots

Demonstrations

Industrial

Hastings Project

NRG Petranova **Project**

1.6 MMT/year

Main Questions from Stakeholders

- Is it safe?
- Will it leak?
- What happens if it leaks?

Geologic CO₂ Storage - Safe By Design

- Site Characterization Permitting requires high level of assurance
- 2. Risk Assessment- Modeling identifies potential unwanted outcomes
- 3. Project Design to minimize potential risk
- 4. Monitoring Plan

<u>Deep Subsurface – Verification</u> Behavior conforms to predictions

Shallow Subsurface - Assurance
No unwanted outcomes to environment

Environmental Concerns

- Drinking water impacts
 - CO₂ or brine causing degradation of water quality
- Human health and safety
 - CO₂ reaching ground surface and displacing oxygen in low-lying areas
- Overall ecosystem health
 - Marine
 - Terrestrial

Potential CO₂ Migration Pathways

Brine Migration Pathways

- Brine leakage through faults/wells to the shallow subsurface
- Along-dip water displacement

Science Addressing Questions

- Controlled Releases/Injections
 - Deep Injection Projects
 - Shallow Controlled Releases
- Natural Analogs
- Industrial Analogs
- Laboratory Simulations
 - Geochemical and biological
- Numerical Modeling

Potential Groundwater Impacts

<u>CO</u>2

- pH decrease
- Mobilization of heavy metals
 - Mineral dissolution
 - Detachment of metals from grain surfaces

Brine

 Organics, injection impurities, total dissolved solids

Evaluating Metal Mobilization

Laboratory:

• Rapid trace metal mobilization followed by decline. (Lu et. al, 2009)

Shallow Controlled Release (ZERT)

 Metals mobilized but were below drinking water standards and transient (Kharaka, 2010).

Natural Analogs (Mammoth Mt., Vesuvius)

Metals not present in some high CO₂ environments. Some indication that metals are absorbed by mineral precipitation. (Stephens and Hering, 2004; Aiuppa et al., 1995)

Brine Migration

- Impacts are related to basin size and geometry
- Migration up well bores/faults.
- Abandoned wells should be properly plugged.
- Injection pressure management may be necessary in some instances.

Outcrop Analogs

Hydrothermal Systems as Analogs for Breached Traps and Subsurface Healing: Outcrop and Subsurface Examples and Escape Mechanisms

<u>David Bowen</u>, David Lageson, Lee Spangler (Montana State University)

Bryan Devault, Herbert Mosca (Vecta Oil and Gas)

David Eby (Eby Petrography)

Hydrothermal fluids introduced along a fracture zone – Madison Fm. Gallatin Canyon Montana

Migration Potential

- Correct environments trap CO₂
- Faults are most-likely natural avenues of transport out of traps.
- Faults can self heal
- Faults rarely reach the surface

After Breach of Sandstone Aquifer Seal Hydrothermal Fluids spread out Below Secondary Top Seal Lose Energy and Heat and often, System Self-Heals

Industrial Analog: SACROC Oilfield

- Permian Basin, Texas
- 40 years CO₂ injection for CO₂ enhanced oil recovery
- CO₂ mined from natural subsurface deposit
- 150 Mt CO₂ injected (2012)
- 75 Mt recovered and recycled
- No evidence for CO₂ in the environment (Romanak et al., 2012)

Research on Potential Environmental Impacts

International Journal of Greenhouse Gas Control 40 (2015) 350-377

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Developments since 2005 in understanding potential environmental impacts of CO₂ leakage from geological storage

D.G. Jones a, , S.E. Beaubien b, J.C. Blackford c, E.M. Foekema d, J. Lions e, C. De Vittor f, J.M. West a, S. Widdicombe c, C. Hauton g, A.M. Queirós c

- a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
- b Sapienza Università di Roma, Dip. Scienze della Terra, P.le A. Moro 5, 00185 Roma, Italy
- c Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PLI 3DH, UK
- ^d IMARES Wageningen UR, Postbus 57, 1780AB Den Helder, The Netherlands
- * BRGM (Bureau de Recherche Géologique et Minière), 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2, France
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) Oceanography Section, Via A. Piccard 54, 34151 S. Croce, Trieste, Italy
- * Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton S014 3ZH, UK

Terrestrial Ecosystem Effects

- Effects are spatially limited
- Plants and microbes can uptake substantial amounts of CO₂
- Plant and microbial communities may shift to acid tolerant species.
- Impacts occur at about 10% soil gas at shallow depth (20–30 cm).
- Plants with well-developed root systems are most resilient

Marine Ecosystem Effects

- Most of the CO₂ is retained in the sediments
- When bubble plumes form they dissolve within 10 m of the sea floor.
- Dissolved CO₂ sinks to create a plume near the seabed
- Most impact is to bottom-dwelling immobile biota.
- Many species have mechanisms to protect from small fluctuations

Stakeholder Engagment

- Public outreach should begin early in project planning phase.
- Establish a strong outreach team
- Identify and know key stakeholders
- Establish an outreach program
- Develop key messages and materials tailored to stakeholders
- Have protocols in place for responding to stakeholder concerns before a project begins.

Scientific Evidence Base on Geological CO₂ Storage

- It works -
 - CO₂ is easily stored and trapped in deep geological formations
- It is safe -
 - Permitting and site selection ensure safety
 - No adverse outcomes have been seen
- It is ready for deployment now

Concluding Remarks

- Geological CO₂ storage is safe by design.
- Environmental protection begins before a project starts.
- Site selection, risk assessment, permitting and monitoring provide assurance.
- Many scientific approaches have been used to investigate the potential for environmental impact. The results have provided additional assurance.
- CO₂ is not likely to reach groundwater or ground surface
- In the unlikely event that CO₂ does reach the ground surface, impact will be transient and localized.
- Stakeholder engagement is vitally important and should be implemented early in the planning phases
- Protocols for responding to stakeholder concerns should be in place before a project begins.

Primary external sponsor

Thank you

Katherine Romanak
Gulf Coast Carbon Center
Bureau of Economic Geology
The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc/

